
CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 7: The Greedy Approach

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: 2pm-4pm Mon & Thur

Outline

¡ The Coin Change Problem

¡ Minimum Spanning Trees

¡ Dijkstra’s Algorithm for Single-Source Shortest Paths

¡ Scheduling

¡ Huffman Code

¡ The Knapsack Problem

1

The Greedy Approach

¡ The greedy approach grabs data items in sequence, each time taking the one that is deemed
“best” according to some criterion, without regard for the choices it has made before or will
make in the future.

¡ Don’t think greedy approach is evil due to its name “greedy” with negative meaning. It often lead to
very efficient and simple solution.

¡ Compared with dynamic programming, the greedy approach is much more straigtforward.
¡ No recursive property is needed.

¡ Each time, select the step with local optimal.
¡ No gaurantee of global optimal, which should be determined based on the problem.

2

THE COIN CHANGE PROBLEM

3

The Coin Change Problem

¡ Given an amount 𝑁 and unlimited supply of coins with denominations 𝑑1, 𝑑2, … , 𝑑𝑛,
compute the smallest number of coins needed to get 𝑁.

¡ Example:
¡ For 𝑁 = 86 (cents) and 𝑑1 = 1, 𝑑2 = 2, 𝑑3 = 5, 𝑑4 = 10, 𝑑5 = 25, 𝑑6 = 50, 𝑑7 = 100.

¡ The optimal change is: one 50, one 25, one 10, and one 1.

¡ Can greedy approach obtain optimal solution?

4

The Coin Change Problem

¡ The greedy approach:
1. Select the largest coin.

2. Check if adding the coin makes the change exceed the amount.

a. No, add the coin.

b. Yes, set the largest coin as the second largest coin and go back to step 1.

3. Check if the total value of the change equals the amount.

a. No, go back to step 1.

b. Yes, problem solved.

5

The Coin Change Problem

¡ Successful example:
¡ For 𝑁 = 86 (cents) and 𝑑1 = 1, 𝑑2 = 2, 𝑑3 = 5, 𝑑4 = 10, 𝑑5 = 25, 𝑑6 = 50, 𝑑7 = 100.
¡ The greedy approach is optimal: 50, 25, 10, 1.

¡ Failed example:
¡ For 𝑁 = 86 (cents) and 𝑑1 = 1, 𝑑2 = 2, 𝑑3 = 5, 𝑑4 = 10, 𝑑5 = 18, 𝑑6 = 25, 𝑑7 = 50, 𝑑8 = 100.
¡ The greedy approach is not optimal: 50, 25, 10, 1.
¡ The optimal solution: 50, 18, 18.

¡ For this problem, the greedy approach does not gaugantee an optimal solution.
¡ For each problem, we should first analyze it that whether the greedy approach can always yield an

optimal solution.

6

Process of the Greedy Approach

¡ A greedy algorithm starts with an empty set and iteratively adds items to the set in sequence
until the set represents a solution to an instance of a problem.

¡ Each iteration consists of the following components:
¡ A selection procedure chooses the next item to add to the set. The selection is performed according to

a greedy criterion that satisfies some locally optimal consideration at the time.
¡ E.g. select the largest coin.

¡ A feasibility check determines if the new set is feasible by checking whether it is possible to complete
this set in such a way as to give a solution to the instance.
¡ E.g. whether exceed the amount.

¡ A solution check determines whether the new set constitutes a solution to the instance.
¡ E.g. whether equal the amount.

7

MINIMUM SPANNING TREES

8

Undirected Graph

¡ We denote an undirected graph as 𝐺 = (𝑉, 𝐸).
¡ An undirected graph is called connected if there is a path

between every pair of vertices.

¡ A path from a vertex to itself, which contains at least three
distinct vertices, is called a simple cycle.

¡ An undirected graph with no simple cycles is called acyclic.

¡ A tree is an acyclic, connected, undirected graph.

9

Image source: Figure 4.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Minimum Spanning Tree

¡ A spanning tree for 𝐺 is a connected subgraph that
contains all the vertices in 𝐺 and is a tree.
¡ Figure (c) and (d) are spanning trees of 𝐺.

¡ A spanning tree with minimum weight is called a minimum
spanning tree.

¡ Our goal is to develop an algorithm to construct the
minimum spanning tree from a undirected weighted graph
𝐺.

¡ In this example:
¡ 𝑉 = {𝑣!, 𝑣", 𝑣#, 𝑣$, 𝑣%}.

¡ 𝐸 = { 𝑣!, 𝑣" , 𝑣!, 𝑣# , 𝑣", 𝑣# , 𝑣", 𝑣$, 𝑣#, 𝑣$, 𝑣#, 𝑣% ,
(𝑣$, 𝑣%)}.

10

Image source: Figure 4.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Prim’s Algorithm

High level pseudocode:

¡ Initialize 𝐹 = ∅ and 𝑌 = 𝑣! .

¡ Iterate when the instance is not solved:
¡ Select a vertex in 𝑉 − 𝑌 that is nearest to 𝑌.

¡ Add the vertex to 𝑌.

¡ Add the edge to 𝐹.

¡ Check whether 𝑌 == 𝑉.

¡ Yes, the instance is solved.

11

Image source: Figure 4.4, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pseudocode of Prim’s Algorithm

¡ Every-case time complexity:
𝑇 𝑛 = 2 𝑛 − 1 𝑛 − 1 ∈ Θ 𝑛"

12

Optimality

¡ It is easy to develop a greedy algorithm, but difficult to prove whether or not a
greedy algorithm always produces an optimal solution.

13

Optimality Proof for Prim’s Algorithm

Theorem 1
Prim’s algorithm correctly computes an minimum spanning tree.
Proof:
¡ Prove by induction.
¡ The induction hypothesis: after each iteration, the tree 𝐹 is a subgraph of some minimum spanning

tree 𝑇.
¡ Basis step: it is trivially true at the start, since initially 𝐹 is just a single node and no edges.
¡ Induction Step:

¡ Now suppose that at some point in the algorithm we have 𝐹 which is a subgraph of 𝑇, and Prim’s algorithm tells us
to add the edge 𝑒. We need to prove that 𝐹 ∪ {𝑒} is also a subtree of some minimum spanning tree.

14

Image source: Figure 4.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimality Proof for Prim’s Algorithm

Proof (cont’d):
¡ We discuss in two cases: 𝑒 ∈ 𝑇 and 𝑒 ∉ 𝑇.

¡ If 𝑒 ∈ 𝑇:
¡ It is clearly true, since by induction 𝐹 is a subtree of 𝑇 and 𝑒 ∈ 𝑇 and thus 𝐹 ∪ {𝑒} is a subtree of 𝑇.

¡ If 𝑒 ∉ 𝑇:
¡ Adding 𝑒 to 𝑇 creates a cycle, because adding any edge to a spanning tree creates a cycle.

¡ Since 𝑒 has one endpoint vertex in 𝐹 and one endpoint vertex not in 𝐹, there has to be some other edge 𝑒’ in this
cycle that has exactly one endpoint in 𝐹.

¡ So Prim’s algorithm could have added 𝑒’ but instead chose to add 𝑒, which means that the weight of 𝑒 must be
smaller or equal to 𝑒’.

15

Optimality Proof for Prim’s Algorithm

Proof (cont’d):
¡ If we add 𝑒 to 𝑇 and remove 𝑒’ we will obtain a new tree 𝑇’ with smaller total weight than 𝑇.

¡ However, it is impossible because 𝑇 is a minimum spanning tree, which indicate the weight of 𝑒 must be
equal to the weight of 𝑒’.

¡ Therefore, 𝑇’ is also a minimum spanning tree and 𝐹 ∪ {𝑒} is a subtree of some minimum spanning tree.

¡ This maintains the induction, so proves the theorem.

16

Kruskal’s Algorithm

High level pseudocode:

¡ 𝐹 = ∅.

¡ Create disjoint subsets of 𝑉, one for each
vertex and containing only that vertex.

¡ Sort the edges in 𝐸 in nondecreasing order.

¡ Iterate when the instance is not solved:

¡ Select the next edge in order;

¡ Check whether the edge connects two
vertices in disjoint subsets.

¡ Yes, merge the subsets and add the edge to 𝐹.

¡ Check whether all the subsets are merged.

¡ Yes, the instance is solved.

17

Image source: Figure 4.7, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pseudocode of Kruskal’s Algorithm

¡ We first define a data structure to represent
disjoint set and use set_pointer to refer.

¡ The following functions will be used:
¡ initial(n) initializes n disjoint subsets, each of

which contains exactly one of the indices
between 1 and n.

¡ p = find(i) makes p point to the set containing
index i.

¡ merge(p, q) merges the two sets, to which p
and q point, into the set.

¡ equal(p, q) returns true if p and q both point to
the same set.

18

Worst-case Time Complexity of Kruskal’s Algorithm

There are three considerations in this algorithm:
¡ The time to sort the edges: Θ(𝑚 lg𝑚).
¡ The time in the while loop.

¡ In the worst case, every edge is considered before the while loop is exited, which means there are
𝑚 passes through the loop.

¡ The time complexity for 𝑚 passes through a loop that contains a constant number of calls to
routines find, equal, and merge is Θ(𝑚 lg𝑚) (try to implement functions for disjoint sets and
prove this complexity).

¡ The time to initialize 𝑛 disjoint sets: Θ(𝑛).

19

Worst-case Time Complexity of Kruskal’s Algorithm

¡ In the worst case, every vertex can be connected to every other vertex, which would
mean that

𝑚 =
𝑛 𝑛 − 1

2
∈ Θ 𝑛" .

¡ Therefore, the worst-case time complexity in terms of 𝑛 is:
𝑊 𝑛 ∈ Θ 𝑛" lg 𝑛" = Θ 𝑛" lg 𝑛 .

20

Optimality Proof for Kruskal’s Algorithm

¡ Almost same as the proof of Prim’s Algorithm.
¡ Try to prove it by yourself (maybe appear in the exam).

21

Comparing Prim’s Algorithm with Kruskal’s Algorithm

¡ We obtained the following time complexities:
¡ Prim’s algorithm: 𝑇 𝑛 ∈ Θ 𝑛" .

¡ Kruskal’s algorithm: 𝑊 𝑚 = Θ(𝑚 lg𝑚) and 𝑊 𝑛 ∈ Θ 𝑛" lg 𝑛 .

¡ In a connected graph:

𝑛 − 1 ≤ 𝑚 ≤
𝑛 𝑛 − 1

2
.

¡ Therefore, the conclusion is:
¡ For a graph whose 𝑚 is near the low end of these limits (the graph is very sparse), Kruskal’s algorithm is faster with

time complexity Θ(𝑛 lg 𝑛).
¡ For a graph whose 𝑚 is near the high end (the graph is highly connected), Prim’s algorithm is faster with time

complexity Θ 𝑛" .

22

DIJKSTRA’S ALGORITHM FOR SINGLE-SOURCE SHORTEST
PATHS

23

Single-Source Shortest Paths

¡ We developed a Θ(𝑛*) algorithm for determining the shortest paths between each
pair of vertices in a weighted, directed graph by Floyd’s algorithm with dynamic
programming.

¡ If we want to know only the shortest paths from one particular vertex to all the
others (called the Single-Source Shortest Paths problem), that algorithm would be
overkill.

¡ We will use the greedy approach to develop a Θ(𝑛") algorithm for this problem.
¡ It is just like Prim’s algorithm.

24

Dijkstra’s Algorithm

High level pseudocode:
¡ Initialize 𝐹 = ∅ and 𝑌 = 𝑣(.
¡ Iterate when the instance is not solved:

¡ Select a vertex 𝑣 in 𝑉 − 𝑌 that has a
shortest path from 𝑣!, using only vertices
in 𝑌 as intermediates.

¡ Add 𝑣 to 𝑌.
¡ Add the edge that touches 𝑣 to 𝐹.
¡ Check whether 𝑌 == 𝑉.

¡ Yes, the instance is solved.

25

Image source: Figure 4.8, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Dijkstra’s Algorithm

¡ Similar to Prim’s algorithm, the every-
case time complexity is:

𝑇 𝑛 = 2 𝑛 − 1 " ∈ Θ 𝑛" .

¡ Proof of Dijkstra’s algorithm is also
similar.

26

SCHEDULING

27

Scheduling Problem

¡ Suppose a hair stylist has several customers waiting for different treatments.
¡ E.g. massage, simple cut, wash+cut+style, permanent, hair dye...

¡ The treatments don’t all take the same amount of time, but the stylist knows how
long each takes.

¡ A reasonable goal would be to schedule the customers in such a way as to minimize
the total time they spend both waiting and being served.

¡ The problem of minimizing the total time in the system has many applications.
¡ For example, we may want to schedule users’ access to a disk drive to minimize the total time they

spend waiting and being served.

28

Scheduling Problem

¡ Suppose there are three jobs and the service times for these jobs are
𝑡(= 5, 𝑡) = 10, 𝑡* = 4

¡ If we schedule them in the order 1, 2, 3, the times spent in the system for the three jobs are
as follows:
¡ Job 1: 5 (service time).
¡ Job 2: 5 (wait for job 1) + 10 (service time).
¡ Job 3: 5 (wait for job 1) + 10 (wait for job 2) + 4 (service time).

¡ The total time in the system for this schedule is
5 + 5 + 10 + 5 + 10 + 4 = 39

29

Time for
job 1

Time for
job 2

Time for
job 3

Scheduling Problem

¡ This same method of computation yields the following list of all possible schedules and total times in the
system:

¡ Schedule [3, 1, 2] is optimal with a total time of 32.

30

Schedule Total Time in the System

[1, 2, 3] 5 + (5 + 10) + (5 + 10 + 4) = 39

[1, 3, 2] 5 + (5 + 4) + (5 + 4 + 10) = 33

[2, 1, 3] 10 + (10 + 5) + (10 + 5 + 4) = 44

[2, 3, 1] 10 + (10 + 4) + (10 + 4 + 5) = 43

[3, 1, 2] 4 + (4 + 5) + (4 + 5 + 10) = 32

[3, 2, 1] 4 + (4 + 10) + (4 + 10 + 5) = 37

Scheduling Problem

¡ The algorithm is straightforward (even without a name):
¡ Sort the jobs by service time in nondecreasing order.

¡ Iterate when the instance is not solved.

¡ Schedule the next job.

¡ Check whether there are no more jobs.

¡ Yes, the instance is solved.

¡ The worst-case time complexity is mainly on the sorting part: 𝑊(𝑛) ∈ Θ(𝑛 lg 𝑛).

31

Optimality Proof of the Algorithm for Scheduling Problem

Theorem 2
The only schedule that minimizes the total time in the system is one that schedules jobs in
nondecreasing order by service time.
Proof:
¡ We show this using proof by contradiction.
¡ Let 𝑡+ be the service time for the 𝑖th job scheduled in some particular optimal schedule.
¡ If they are not scheduled in nondecreasing order, then for at least one 𝑖 where 1 ≤ 𝑖 ≤

𝑛 − 1,
𝑡+ > 𝑡+,(.

32

Optimality Proof of the Algorithm for Scheduling Problem

Proof (cont’d):

¡ We can rearrange our original schedule by swapping the 𝑖th and (𝑖 + 1)st jobs with
total time 𝑇’:

𝑇+ = 𝑇 + 𝑡,-! − 𝑡, < 𝑇,

because 𝑡, > 𝑡,-!, which contradicts the optimality of our original schedule.

33

Multiple-Server Scheduling Problem

¡ It is straightforward to generalize our algorithm to handle the Multiple-Server
Scheduling problem with 𝑚 servers.
¡ Order the jobs again by service time in nondecreasing order.

¡ Let the first server serve the first job, the second server the second job, ... , and the 𝑚th server the
𝑚th job.

¡ The first server will finish first because that server serves the job with the shortest service time.

¡ Then, the first server serves the (𝑚 + 1)st job. Similarly, the second server serves the (𝑚 + 2)nd
job, and so on.

34

Multiple-Server Scheduling Problem

¡ The scheme is as follows:
¡ Server 1 serves jobs 1, 1 + 𝑚, 1 + 2𝑚, 1 + 3𝑚,…
¡ Server 2 serves jobs 1, 2 + 𝑚, 2 + 2𝑚, 3 + 3𝑚,…
¡ …

¡ Server 𝑖 serves jobs 𝑖, 𝑖 + 𝑚, 𝑖 + 2𝑚, 𝑖 + 3𝑚,…
¡ …

¡ Server 𝑚 serves jobs 𝑚, 2𝑚, 3𝑚, 4𝑚,…

¡ Clearly, the jobs end up being processed in the following order:

¡ 1, 2, … ,𝑚, 1 + 𝑚, 2 + 𝑚,… , 2𝑚, 1 + 2𝑚,…

35

HUFFMAN CODE

36

Data Compression by Binary Code

¡ Given a data file, it would be desirable to find a way to store the file as efficiently as possible.

¡ The problem of data compression is to find an efficient method for encoding a data file.

¡ A common way to represent a file is to use a binary code.

¡ In such a code, each character is represented by a unique binary string, called the codeword.

¡ A fixed-length binary code represents each character using the same number of bits.
¡ For example, suppose our character set is {a, b, c}.

¡ Then we could use 2 bits to code each character: a: 00, b: 01, c: 11.

¡ Given this code, if our file is ababcbbbc, our encoding will be 000100011101010111.

37

Data Compression by Binary Code

¡ We can obtain a more efficient coding using a variable-length binary code.
¡ Such a code can represent different characters using different numbers of bits.

¡ In the previous example:
¡ We can code one of the characters as 0.
¡ Since ‘b’ occurs most frequently, it would be most efficient to code ‘b’ as 0.
¡ However, then ‘a’ could not be coded as ‘00’ because we would not be able to distinguish one ‘a’ from

two ‘b’s.
¡ Furthermore, we would not want to code ‘a’ as ‘01’ because when we encountered a 0, we could not

determine if it represented a ‘b’ or the beginning of an ‘a’.
¡ So we could code by: a: 10, b: 0, c: 11.
¡ This file would be encoded as: 1001001100011.

38

Optimal Binary Code Problem

¡ This second coding method takes 13 bits to represent that is better than the first one
with 18 bits.

¡ Given a file, the optimal binary code problem is to find a binary character code for
the characters in the file, which represents the file in the least number of bits.

39

Prefix Codes

¡ One particular type of variable-length code is a prefix code.

¡ In a prefix code no codeword for one character constitutes the beginning
of the codeword for another character.

¡ For example, if 01 is the code word for ‘a’, then 011 could not be the
codeword for ‘b’.

¡ The advantage of a prefix code is that there is no ambiguity when
interpreting the codes.

¡ Every prefix code can be represented by a binary tree whose leaves are
the characters that are to be encoded.

40

Image source: Figure 4.9, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Prefix Codes

¡ To parse, we start at the first bit on the left in the file and
the root of the tree.

¡ We sequence through the bits, and go left or right down
the tree depending on whether a 0 or 1 is encountered.

¡ When we reach a leaf, we obtain the character at that leaf;
then we return to the root and repeat the procedure
starting with the next bit in sequence.

¡ Try to parse the tree: 1001001100011 -> ababcbbbc.

41

Image source: Figure 4.9, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Example of Optimal Binary Code Problem

¡ That table also shows three different codes we
could use to encode the file with character set {a,
b, c, d, e, f} .

¡ The number of bits for each encoding:

¡ Bits(C1)=16(3)+5(3)+12(3)+17(3)+10(3)+25(3)=255.

¡ Bits(C2)=16(2)+5(5)+12(4)+17(3)+10(5)+25(1)=231.

¡ Bits(C3)=16(2)+5(4)+12(3)+17(2)+10(4)+25(2)=212.

42

Character Frequecy C1 (Fixed-
Length)

C2
(Variable-
Length)

C3
(Huffman

)

a 16 000 10 00

b 5 001 11110 1110

c 12 010 1110 110

d 17 011 110 01

e 10 100 11111 1111

f 25 101 0 10

Example of Optimal Binary Code Problem

43

Character Frequecy C1 (Fixed-
Length)

C2
(Variable-
Length)

C3
(Huffman

)

a 16 000 10 00

b 5 001 11110 1110

c 12 010 1110 110

d 17 011 110 01

e 10 100 11111 1111

f 25 101 0 10

C2 C3

Image source: Figure 4.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Code Problem

¡ As can be seen from the preceding example, the number of bits it takes to encode a
file given the binary tree T corresponding to some code is given by

𝑏𝑖𝑡𝑠 𝑇 =9
,.!

/

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑣, 𝑑𝑒𝑝𝑡ℎ(𝑣,)

¡ It is similar to the optimal binary search tree problem, but with no constraint that the
tree should be a search tree (𝐾𝑒𝑦0123_56,07 ≤ 𝐾𝑒𝑦/871 ≤ 𝐾𝑒𝑦9,:63_56,07).

44

Huffman’s Algorithm

¡ We need to use a priority queue.

¡ In a priority queue, the element with the
highest priority is always removed
(dequeue) next.
¡ In this case, the element with the highest

priority is the character with the lowest
frequency in the file.

¡ A priority queue can be implemented as a
linked list, but more efficiently as a heap.

45

Image source: Figure 4.11, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Huffman’s Algorithm

46

Image source: Figure 4.11, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Huffman’s Algorithm

¡ If a priority queue is implemented as a heap, it can be initialized in Θ(𝑛) time.

¡ Furthermore, dequeue and enqueue in heap requires Θ(lg 𝑛) time.

¡ Since there are 𝑛 − 1 passes through the for loop, the algorithm runs in Θ(𝑛 lg 𝑛)
time.

47

Optimality Proof Huffman’s Algorithm

¡ Before the optimality proof huffman’s algorithm, we have the following definitions
¡ Two nodes are called siblings in a tree if they have the same parent.

¡ A branch with root 𝑣 in tree 𝑇 is the subtree whose root is 𝑣.

48

Optimality Proof Huffman’s Algorithm

Theorem 3

Huffman’s algorithm produces an optimal binary code.

Proof:

¡ The proof is by induction.

¡ Assuming the set of trees obtained in the 𝑖th step are branches in an optimal binary
tree, we show that the set of trees obtained in the (𝑖 + 1)st step are also branches in
an optimal binary tree.

49

Optimality Proof Huffman’s Algorithm

Proof (cont’d):
¡ Basis step:

¡ Clearly, the set of single nodes obtained in the 0th step are branches in a binary tree
corresponding to an optimal code.

¡ Induction step:
¡ Assume the set of trees obtained in the 𝑖th step are branches in some optimal binary tree 𝑇.

¡ Let 𝑢 and 𝑣 be the roots of the trees to be combined in the (𝑖 + 1)st step of Huffman’s algorithm.

¡ If 𝑢 and 𝑣 are siblings in 𝑇, then we are done because the set of trees obtained in the (𝑖 + 1)st step
of Huffman’s algorithm are branches in 𝑇.

50

Optimality Proof Huffman’s Algorithm

Proof (cont’d):
¡ Otherwise, without loss of generality, assume 𝑢 is at a level in 𝑇 at least as low

as 𝑣.

¡ Because we construct a branch with two children at each step, 𝑢 must have
some sibling 𝑤 in 𝑇.

¡ Since the tree with root 𝑣 is chosen by Huffman’s algorithm in this step
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑣 ≤ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑤 .

¡ And in 𝑇
𝑑𝑒𝑝𝑡ℎ 𝑣 ≤ 𝑑𝑒𝑝𝑡ℎ 𝑤 .

51

Image source: Figure 4.12, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimality Proof Huffman’s Algorithm

Proof (cont’d):
¡ We can create a new binary tree 𝑇′ by swapping the positions of the branches rooted at 𝑣 and 𝑤

in 𝑇 such that
𝑏𝑖𝑡𝑠 𝑇! = 𝑏𝑖𝑡𝑠 𝑇 + 𝑑𝑒𝑝𝑡ℎ 𝑤 − 𝑑𝑒𝑝𝑡ℎ 𝑣 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑣 − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑤 ≤ 𝑏𝑖𝑡𝑠 𝑇 .
¡ It means that 𝑇′ is also optimal. Otherwise it contradicts the fact that 𝑇 is optimal.

¡ Clearly, the set of trees obtained in the (𝑖 + 1)st step of Huffman’s algorithm are branches in some
optimal binary tree.

52

Image source: Figure 4.12, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

THE KNAPSACK PROBLEM

53

Knapsack Problem Recall

¡ Problem description:
¡ Given 𝑛 items and a "knapsack.”
¡ Item 𝑖 has weight 𝑤& > 0 and has value 𝑣& > 0.
¡ Knapsack has capacity of 𝑊.
¡ Goal: Fill knapsack so as to maximize total value.

¡ Mathematical description:
¡ Given two 𝑛-tuples of positive numbers < 𝑣!, 𝑣", … , 𝑣' > and < 𝑤!, 𝑤", … , 𝑤' >, and 𝑊 > 0, we wish to determine the

subset 𝑇 ⊆ {1,2, … , 𝑛} that

maximize @
&∈)

𝑣& subject to@
&∈)

𝑤& ≤ 𝑊

¡ Can greedy approach obtain optimal solution?

54

Example

¡ Weight capacity 𝑊 = 5kg.

¡ The possible ways to fill the knapsack:
¡ {1, 2, 3} has value $37 with weight 4kg.

¡ {3, 4} has value $35 with weight 5kg. (greedy)

¡ {1, 2, 4} has value $42 with weight 5kg. (optimal)

¡ The greedy approach by always selecting the
item with highest value is not optimal.

55

𝒊 𝒗𝒊 𝒘𝒊

1 $10 1kg

2 $12 1kg

3 $15 2kg

4 $20 3kg

The Fractional Knapsack Problem

¡ The previous problem is also called the 0-1 knapsack problem.
¡ Each item can only be taken or not taken as a whole.

¡ Now, we change the problem to enable one to take any fraction of the item.
¡ Both weight and value follow the fraction.

¡ This is called the fractional knapsack problem.

¡ A greedy approach can be developed by always choosing the item with the largest value-weight
ratio.

56

The Fractional Knapsack Problem

¡ Weight capacity 𝑊 = 5kg.

¡ By the greedy approach:
¡ Take item 2: remain 4kg and total value is 12.

¡ Take item 1: remain 3kg and total value is 22.

¡ Take item 3: remain 1kg and total value is 37.

¡ Take 1/3 of item 4: remain 0kg and total value is 43.67.

¡ It is optimal. Try to prove it.

57

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $10 1kg 10$/kg

2 $12 1kg 12$/kg

3 $15 2kg 7.5$/kg

4 $20 3kg 6.67$/kg

Dynamic Programming vs the Greedy Approach

¡ In common: find optimal solution for subinstance of the problem.
¡ Difference:

¡ The greedy approach: any optimal solution for subinstance is a part of the final optimal solution.
¡ Dynamic programming: only a subset of optimal solution for subinstances construct the final optimal

solution.

¡ Different approaches are used for similar problems with only little difference.
¡ Shortest path problem vs single-source shortest path problem.
¡ Optimal binary search tree vs optimal binary code.
¡ 0-1 knapsack problem vs fractional knapsack problem.

¡ Analyzing the problem is really important when desinging an algorithm.

58

Conclusion

After this lecture, you should know:
¡ What is greedy approach.

¡ How to design a greedy approach.

¡ How to prove if a problem can be solved by a greedy approach.

¡ Induction with contradiction.

¡ What is the difference between dynamic programming and the greedy approach.

59

Assignment 3

¡ Assignment 3 is released. The deadline is 18:00, 1st June.

60

Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion. J

61

